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The influence of temperature gradients on electric membrane potentials and 

processes of ion transport in cell structures is studied with the thermodiffusion effects 

taken into account. The thermodiffusion distribution of ion concentration in a system 

with membranes is found. The shifts of ion concentration under the influence of 

temperature gradients are examined. They have an exponential shape with respect to 

the product of Soret coefficient and temperature difference. 

The dependence of electric membrane potentials and processes of passive ion 

transport on the thermodiffusion characteristics, the temperature and concentration 

gradients is analysed. Numerical values of the thermodiffusion properties in 

thermoelectric membrane phenomena are obtained. The proposed results are of  

importance with taking into account the influence of external temperature fields on 

bioobjects under the application of hyper- and hypothermia in modern medical 

practice. 

Keywords: membrane cell potential, temperature gradient, thermodiffusion, 
Soret coefficient. 

 

 

 

 

 



 − 2 −

Introduction 
Dependence of membrane cell potentials on the concentration of various 

inorganic ions is described by a theory which is valid for the case of thermodynamic 
equilibrium. Main results of this theory are based on the assumption that the 
temperature, pressure and chemical potentials are equal for both sides of membranes 
and the gradients of concentration �C and electric potential �� exist. The flow of 
charged particles is  properly described by the well-known electrodiffusion Nernst-
Plank equation (see, for example, [1-3]). 

Isothermal conditions are violated while the medical methods of hyper- and 
hypothermia are used. The influence of temperature gradients �T on the membrane 
cell potentials could be taken into account by linear laws of the thermodynamics of 
irreversible processes. The main idea consists in generalization of the Nernst-Plank 
equation for the case of temperature gradients and in deriving expression for the 
thermoelectrochemical potential which gradient is a moving force for ion flow 
through membrane structures with non-zero gradients of concentration, electric field 
potential and temperature. A formula for the Nernst concentration potential can be 
derived from the condition that the thermoelectrochemical potentials are equal for 
both sides of membranes and with temperature gradients taken into account. 

The solution of the generalized Nernst-Plank equation gives us an expression for 
the ion flow through membrane under the action of gradients �C, �� and �T. 
Taking this equation into account and consider only univalent ions K+, Na+ and Cl�, it 
is possible to get an expression for the stationary membrane Goldman-Hodgkin-Katz 
potential under non-isothermal conditions. 

Thus, such formulae will give us the dependence of membrane cell potentials on 
the ion concentrations, temperature gradients and thermodiffusion properties like 
the Soret coefficient. Experimental data for this coefficient allow us to evaluate 
numerical values of non-isothermal membrane cell potentials. 

 

Thermodiffusion Distribution of Ion Concentration 
Thermodiffusion distribution of ion concentration in a system with membranes 

was studied in [4] with peculiarities of passive and active transport taking into 
account. The dependence of shifts of ion concentration for both sides of membranes 
on the temperature gradient was obtained from the condition of stationary flow 
through membranes for each sort of ions. Respectively, one has for ions K+ 
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and for ions Na+ 
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Here (�C)K and (�C)Na are the shifts of ion concentrations for both sides of 
membranes (at approximation of symmetrical distribution); [K]i, [Na]i are the ion 
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concentrations inside a cell for zero temperature gradient; [K]e, [Na]e are the 
concentrations of these ions outside for zero temperature gradient; �T = Te�Ti is the 
difference of temperature outside and inside a cell; �K, �Na are the Soret coefficients 
for ions K+ and Na+. 

Figures 1 and 2 show graphical dependence of thermodiffusion shifts of ion 
concentrations (�C)K and (�C)Na for the gigantic calmar’s axone where the ion 
concentrations are respectively as follows: [K]i = 392 mM/l, [Na]i = 78 mM/l and [K]e 
= 22 mM/l, [Na]e = 462 mM/l [2]. Values of �K, �Na can be taken from experiments on 
thermodiffusion in electrolyte solutions [5, 6]: � =1.18·10-3 K-1, �Na=2·10-3 K-1. 
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Fig. 1. Dependence of the 

thermodiffusion shift of ion 
concentration for K+ on temperature 

difference under various values of �K: 
1.18�10-3, 2.5�10-3, 5�10-3� -1. 

Fig. 2. Dependence of the 
thermodiffusion shift of ion 

concentration for Na+ on temperature 
difference under various values of �Na: 

2�10-3, 3.5�10-3, 5�10-3� -1. 

In cases of aqueous electrolyte solutions with thermodiffusion the concentration 
of dissolved electrolyte always increases in cold region, this fact being confirmed by 
numerous experiments [5-7]. We consider, for certain condition, such a situation that 
Te�Ti, i.e. �T � 0. As is seen from Fig.1 and Fig.2, for this case (�C)K � 0, (�C)Na � 0. 
A physical explanation of this result connects with higher temperature of the external 
surroundings and, respectively, the thermodiffusion ion flow occurs because of a 
higher kinetic energy of ions. In the case of K+ ions this flow supports a flow of K+ 

ions under its active transport. For Na+ ions the situation is quite opposite: the 
thermodiffusion flow of Na+ ions has an opposite direction with respect to a flow of 
Na+ ions under its active transport. 
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The Concentration Nernst Potential 
Using general notions of the thermodynamics of irreversible processes, it is 

possible to write the following expression for the flow of charged particles (ions) 
through membranes with gradients �C, �� and �T taking into account: 

TDCCbCDI ∇σ−ϕ∇−∇−=
����

.            (3) 
Eq. (3) gives a generalized Nernst-Plank equation for the case of non-zero 
temperature gradient. Here I is the density of flow in moles per unit square and unit 
time; C is the ion concentration in moles per unit volume; � is the potential of electric 
field; T is the absolute temperature; D, b, � are the coefficients of diffusion, mobility 
and Soret for a fixed sort of ions. 

Let us transform this equation to the Teorell equation (see, for example, [3]). 
For this purpose, first we take out a factor (�Cb/zF) together with a gradient 
operator and receive 
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Here z is the valency, F is the Faraday constant. The quantity in brackets is naturally 
called the thermoelectrochemical potential gradient of which being a moving force 
for ion flow in this case. 

The condition of ion equilibrium is equality of thermoelectrochemical potentials 
for both sides of membrane. It gives a generalized expression for the Nernst 
concentration potential with temperature gradients taking into account 
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Here Ta is the average temperature in a system. It is necessary to mention that the 
concentrations in eq. (5) must be calculated in accordance with formulae (1) and (2). 
 

Non-Isothermal Stationary Membrane Potential 
Solution of eq. (3) can be written in the following form using the approximation 

of constant gradients of electric potential and temperature (this approximation is 
valid for membranes of small thickness, including biomembranes): 

ψ−
−ψ
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Here P is the coefficient of permeability for a fixed sort of ions and 
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is the generalized dimensionless membrane potential. 
With allowance for eq.(6) written for univalent ions K+, Na+, Cl� and taking into 

account the stationary condition for the whole flow (see, for example, [2-3]), one has 
the following formula for the stationary membrane potential with non-zero 
temperature gradient: 
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ϕ∆+ϕ=ϕ 0
statstat .              (8) 

Here 0
statϕ  is the term given by a well-known expression by Goldman, Hodgkin, Katz 

and �� is the additional term appeared due to the temperature gradient 

( ) ( ){ }T,P,CP,Cn
F2

RT
jjjjj

a ∆σ∆η+∆∆γ=ϕ∆             (9) 

where 	 is the function depends on initial ion concentrations, �n and 
 are the 
functions depend on initial ion concentrations and values �C for each sort of ions 
(explicit forms of these functions are known and do not presented here because of its 
complexity). In accordance with eqs. (1) and (2), the functions �n and 
 have only 
exponential dependences on the product ��T. Linear dependence of the membrane 
potential on �T is caused by the second term in eq. (9) and also by the coefficient 
(Ti+Te)/2 which defines the average temperature of a system. 

It is possible to show on principle that taking into account only one sort of ions, 
say K+ ions, can simplify eq.(8) and it gives us the concentration non-isothermal 
Nernst potential (see eq.(5)). Last formula, in its turn, transforms to a well-known 
expression for the equilibrium concentration Nernst potential (see, for example, [8]). 
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Fig. 3. Dependence of the membrane rest 

potential on temperature difference 
��� �  (� �0) under various values 

of �K: 1�10-3, 2.5�10-3, 5�10-3� -1. 

Fig. 4. Dependence of the membrane rest 
potential on Soret coefficient for K+ 
under various values of ��� �  

(� �0): 1, 2, 3 K. 
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Fig. 5. Dependence of the membrane rest 

potential on temperature difference 
�T=Ti�Te (�T�0) under various values 

of �K: 1�10-3, 2.5�10-3, 5�10-3� -1. 

Fig. 6. Dependence of the membrane rest 
potential on Soret coefficient for K+ 
under various values of �T=Ti�Te 

(�T�0): 1, 2, 3 K. 

Figures 3�6 show graphical dependence of membrane rest potential on the Soret 
coefficient for K+ ions and the temperature difference for both sides of membrane in 
the calmar’s axone. As is seen from these figures, the dependence of the membrane 
potential is almost linear for concerned intervals. It is obvious that the dependence of 
�M on � or �T has a linear shape for ��T��1 when all exponential functions can be 
expended in series with linear terms taking into account. 

 

Conclusion 
Increase (decrease) of membrane potential has to be observed under increase 

(decrease) of temperature in the external side of membrane compared with internal 
temperature, i.e. the internal cell environment becomes more electronegative 
(electropositive) with respect to external media. 

Dependence of membrane potentials on the product ��  is approximately linear 
within intervals � � �� ���� 3��  and � = (1�10-3 � 5�10-3�� -1; change of membrane 
potential approaches 5% of its value for zero temperature gradients. For �= 1�10-3� -

1 and � �� 10-1�  the change of membrane cell potential is about 10-2 mV, this value 
can be easily registered by modern technique. 
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